

Reading Response Questions/Thoughts

Can D3 verify data and check errors, or should all the data wrangling occur before using it?

- I'm still really confused about the use of the enter, update, and exit data fields. Why would a programmer need to have access to data that has already exited?
- When would you recommend someone to use D3 over tools such as Tableau, particularly in a workplace / professional setting?
- For D3, did Mike Bostock and team have to choose between doing their PhD research and building out their project for general programmer consumption?
- It was mentioned that D3 is the standard in industry for making these dynamic and interactive visuals, but is that still the case with static visuals?

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily <u>perceived</u> than the information in the other visualization.

5

Mackinlay's ranking of encodings

QUANTITATIVE

Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape

ORDINAL

Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape NOMINAL Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

Exponents of power law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) - 0.6 (Heptane)
Taste	0.6 (Saccharine) -1.3 (Salt)
Temperature	1.0 (Cold) – 1.6 (Warm)
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

[Psychophysics of Sensory Function, Stevens 61]

Relative magnitude estimation

Mackinlay's ranking of encodings

QUANTITATIVE

ORDINAL

NOMINAL

Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment Shape

Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shape Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area Volume

How many 3's

 $\begin{array}{l} 1281768756138976546984506985604982826762\\ 9809858458224509856458945098450980943585\\ 9091030209905959595772564675050678904567\\ 8845789809821677654876364908560912949686\end{array}$

[based on slide from Stasko]

More preattentive features

Line (blob) orientation	Julesz & Bergen [1983]; Wolfe et al. [1992]
Length	Triesman & Gormican [1988]
Width	Julesz [1985]
Size	Triesman & Gelade [1980]
Curvature	Triesman & Gormican [1988]
Number	Julesz [1985]; Trick & Pylyshyn [1994]
Terminators	Julesz & Bergen [1983]
Intersection	Julesz & Bergen [1983]
Closure	Enns [1986]; Triesman & Souther [1985]
Colour (hue)	Nagy & Sanchez [1990, 1992];
	D'Zmura [1991]; Kawai et al. [1995];
	Bauer et al. [1996]
Intensity	Beck et al. [1983];
-	Triesman & Gormican [1988]
Flicker	Julesz [1971]
Direction of motion	Nakayama & Silverman [1986];
	Driver & McLeod [1992]
Binocular lustre	Wolfe & Franzel [1988]
Stereoscopic depth	Nakayama & Silverman [1986]
3-D depth cues	Enns [1990]
Lighting direction	Enns [1990]

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Speeded classification

Redundancy gain

Facilitation in reading one dimension when the other provides redundant information

Filtering interference

Difficulty in ignoring one dimension while attending to the other

53

Types of dimensions

Integral

Filtering interference and redundancy gain

Separable

No interference or gain

Configural

Only interference, but no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa

Othogonal dims: Height, Width

Discussing notebooks

Stay tuned for extra office hours

We are happy to discuss your code

- But, do not publish your notebook
- Instead enable link sharing in Observable and share the link with us privately through Slack

Principles

- figure/ground
- proximity
- similarity
- symmetry
- connectedness
- continuity
- closure
- common fate
- transparency

