Perception

Maneesh Agrawala

CS 448B: Visualization Fall 2021

1

Reading Response Questions/Thoughts

Can D3 verify data and check errors, or should all the data wrangling occur before using it?

I'm still really confused about the use of the enter, update, and exit data fields. Why would a programmer need to have access to data that has already exited?

When would you recommend someone to use D3 over tools such as Tableau, particularly in a workplace / professional setting?

For D3, did Mike Bostock and team have to choose between doing their PhD research and building out their project for general programmer consumption?

It was mentioned that D3 is the standard in industry for making these dynamic and interactive visuals, but is that still the case with static visuals?

3

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Mackinlay's ranking of encodings

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Val)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Val)
Density (Val)	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

Detection

Detecting brightness

Which is brighter?

Detecting brightness

$(128,128,128)$

(130, 130, 130)

Which is brighter?

Just noticeable difference

JND (Weber's Law)

$$
\Delta S=k \frac{\Delta I}{I}
$$

- Ratios more important than magnitude
- Most continuous variations in stimuli are perceived in discrefe steps

Information in color and value

Value is perceived as ordered
\therefore Encode ordinal variables (O)

\therefore Encode continuous variables (Q) [not as well]

Hue is normally perceived as unordered
\therefore Encode nominal variables (N) using color

Steps in font size

Sizes standardized in $16^{\text {th }}$ century

$$
\begin{array}{llllllllllll}
6 & 7 & 8 & 9 & 10 & 11 & 12 & 14 & 16 & 18 & 21
\end{array}
$$

Estimating Magnitude

18

Steven's power law

$$
S=I^{p}
$$

$p<1$: underestimate p > 1 : overestimate

[graph from Wilkinson 99, based on Stevens 61]

Exponents of power law

Sensation	Exponent		
Loudness	0.6		
Brightness	0.33		
Smell	0.55 (Coffee) -0.6 (Heptane)		
Taste	0.6 (Saccharine) -1.3 (Salt)		
Temperature	1.0 (Cold) -1.6 (Warm)		
Vibration	0.6 (250 Hz) - 0.95 (60 Hz)		
Duration	1.1		
Pressure	1.1		
Heaviness	1.45		
Electic Shock	3.5		

[Psychophysics of Sensory Function, Stevens 61]

Apparent magnitude scaling

[Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96] $S=0.98 A^{0.87}$ [from Flannery 71]

Absolute Symbol Scaling

Flannery Scaling

26

Graduated Symbols

Graduated sphere map

FIGURE 7.4. An eye-catching map created using three-dimensional geometric symbols. (After Smith, 1928. First published in The Geographical Review, 18(3), plate 4. Reprinted with permission of the American Geographical Society.)

32

Figure 3. Graphs from position-angle experiment.

34

Relative magnitude estimation

Most accurate

Mackinlay's ranking of encodings

36

Preattentive vs. Attentive

How many 3's

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How many 3's

Visual pop-out: Color

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

40

Visual pop-out: Shape

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Feature conjunctions

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

42

Preałtentive features

[Information Visualization. Figure 5. 5 Ware 04]

More preattentive features

Line (blob) orientation Length Width
Size
Curvature
Number
Terminators
Intersection
Closure
Colour (hue)

Intensity
Flicker
Direction of motion
Binocular lustre
Stereoscopic depth
3-D depth cues
Lighting direction

Julesz \& Bergen [1983]; Wolfe et al. [1992] Triesman \& Gormican [1988]
Julesz [1985]
Triesman \& Gelade [1980]
Triesman \& Gormican [1988]
Julesz [1985]; Trick \& Pylyshyn [1994]
Julesz \& Bergen [1983]
Julesz \& Bergen [1983]
Enns [1986]; Triesman \& Souther [1985]
Nagy \& Sanchez [1990, 1992];
D'Zmura [1991]; Kawai et al. [1995];
Bauer et al. [1996]
Beck et al. [1983];
Triesman \& Gormican [1988]
Julesz [1971]
Nakayama \& Silverman [1986];
Driver \& McLeod [1992]
Wolfe \& Franzel [1988]
Nakayama \& Silverman [1986]
Enns [1990]
Enns [1990]

Feature-integration theory

Feature maps for orientation \& color [Green]

Treisman's feature integration model [Healey04]

Multiple Attributes

One-dimensional: Lightness

\square

White
White

Black
White

Black

One-dimensional: Shape

-|

	Square
-	Circle
	Circle
	Square
-	Circle

49

Orthogonal dims: Shape \& lightness

-|ण

	Circle
	Square
	Square
	Circle
	Square

51

Speeded classification

Speeded classification

Redundancy gain
Facilitation in reading one dimension when the other provides redundant information

Filtering interference
Difficulty in ignoring one dimension while attending to the other

Types of dimensions

Integral
Filfering interference and redundancy gain Separable

No interference or gain
Configural
Only interference, buł no redundancy gain

Asymmetrical

One dimension separable from other, not vice versa

Correlated dims: Size and value

W. S. Dobson, Visual information processing and cartographic communication: The role of redundant stimulus dimensions, 1983 (reprinted in MacEachren, 1995)

55

Othogonal dims: Height, Width

FIGURE 3.38. An example of the use of an ellipse as a map symbol in which the horizontal and vertical axes represent different (but presumably related) variables.
[MacEachren 95]

Orientation and Size (Single Mark)

FIGURE 3.36. A map of temperature and precipitation using symbol size and orientation to represent data values on the two variables.

How well can you see temperature or precipitation? Is there a correlation between the two?

> [MacEachren 95]

57

Shape and Size

FIGURE 3.40. The bivariate temperature-precipitation map of Figure 3.36, this time using point symbols that vary in shape and size to represent the two quantities.

Easier to see one shape across multiple sizes than one size of across multiple shapes?
[MacEachren 95]

Summary of Integral-Separable

red-green $\left.\right|_{\text {yellow-blue }} ^{\text {Dimensions }}$

[Figure 5.25, Color Plate 10, Ware 00]

Announcements

Assignment 3: Dynamic Queries

Create a small interactive dynamic query application similar to Homefiner, but for restaurants data.

1. Implement interface
2. Submit the application and a short write-up on canvas

Can work alone or in pairs Due before class on Ocł 25, 2021

63

Discussing notebooks

Stay tuned for extra office hours

We are happy to discuss your code

- But, do not publish your notebook
- Instead enable link sharing in Observable and share the link with us privately through Slack

Cestalt

Principles

- figure/ground
- proximity
- similarity
- symmetry
- connectedness
- continuity
- closure
- common fate
- transparency

Figure/Ground

Ambiguous

Principle of surroundedness

Principle of relative size

Figure/Ground

Ambiguous

Unambiguous

Proximity

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$-\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$-\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$\bullet \bullet \bullet \bullet$

70

71

